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A B S T R A C T 

In [1] a feasible timetable generator stochastic simulation modeling framework for the train scheduling 

problem was developed to obtain a train timetable which includes train arrival and departure times at all 

visited stations and calculated average train travel time for all trains in the system. In this study, the 

framework is integrated with a genetic algorithm (GA) in order to get an optimal or suboptimal feasible train 

timetable with minimum average train travel time.  
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1. Introduction 

Train scheduling (timetabling) problem is the 

problem of determining a timetable for a set of trains 

that do not violate track capacities and satisfies some 

operational constraints. A general train timetabling 

problem in the literature considers a single track 

linking two major stations with a number of 

intermediate stations in between [2].  

 

In [1, 3 and 4] a feasible timetable generator 

stochastic simulation modelling framework for the 

problem was developed to obtain a timetable which 

includes train arrival and departure times at all visited 

stations and calculated average train travel time for all 

trains in the system. The inputs, random variables and 

output of the simulation model are exhibited in Fig. 1 

in a black-box shape. 

 

 
Figure 1. Black-box of the simulation mode 
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In this study, the previously developed framework is 

integrated with a GA in order to get an optimal or 

suboptimal feasible train timetable with minimum 

average train travel time. The chromosomes in the 

initial population of the GA are randomly generated, 

and the simulation model is used to evaluate the 

chromosomes and to find the fitness values of them. 

The proposed approach can be used for both the train 

scheduling (timetabling) problem and the train 

rescheduling (dispatching) problem. 

The reason why we employ a GA by integrating it 

with simulation is that GA has been successfully 

adapted to solve several combinatorial optimization 

problems and become increasingly popular techniques 

among approximation techniques for finding optimal or 

suboptimal solutions in a reasonable time [5, 6, 7 and 

8]. 

2.  Literature review 

In some related studies simulation models were 

integrated with GA. [9] presented a GA based approach 

to train dispatching problem. The objective was to 

minimize the total delay time. Their approach includes 

a model for the train dispatching on the lines with 

double tracks. By using this model, train dispatching 

can be optimized by adjusting the orders and times of 

trains’ departure from stations. The authors also 

demonstrated efficiency of the method on a high speed 

railway via simulation. [10] presented a tool called 

DisTrain, dedicated to optimize railway dispatching 

and railway infrastructure, in order to help the 

dispatcher to reschedule trains if needed. The objective 

of the study was to minimize the number of delayed 

trains, GAs and branch and bound algorithm were used 

for solution. The following points should be regarded 

when using DisTrain: the dispatcher (or user) should be 

able to interact with the software and the proposed 

solutions should be dispatcher-oriented, and the 

number of changes from the previous schedule should 

be kept small, as well the complexity of the proposed 

solution (number of actions needed to run it). [11] 

focused on the railway scheduling problem and 

developed a constraint based deterministic simulation 

model with the objective of reducing the lateness of 

trains, and compared the results of the proposed 

sequentially train scheduling heuristic with those of a 

GA. The first two studies [9 and 10] do not focus on 

the scheduling problem but rather focus on the 

rescheduling problem. The last one [11] develops a 

deterministic simulation model and integrates it with 

GA for dealing with the train scheduling problem. Our 

study differs from [11] in that we integrate GA with a 

stochastic simulation model not a deterministic model. 

Our stochastic simulation model reflects the real life 

stochastic nature of railway systems, since it includes 

stochastic track failure and repair times, train speeds 

between predetermined upper and lower limits, and 

additional unplanned delays at the stations.  

Furthermore, while [10 and 11] do not contain the 

encoding, the most important part of a GA, the 

encoding used in [9] is directly dependent to the trains 

in the system. In addition, in their study, a chromosome 

describes train departure orders with real numbers. The 

encoding structure developed in our study does not 

dependent to trains. Any changes in the number of 

trains or number of train meetings (encountering of 

trains that want to use the same track part but running 

in opposite directions), which increase the problem 

complexity, can be overcome easily by proposed 

encoding. On the other hand, solution space of a GA 

has two parts: feasible area and infeasible area [6]. The 

encoding developed hear helps us to obtain 

chromosomes that indicate solutions in the feasible area 

of solution space in the GA part of our study. Thus, our 

encoding structure narrows the solution space by 

preventing us to deal with the infeasible area that will, 

no doubt, take a huge calculation time.  

3.  Simulation Integrated GA (SIMGA) 

GAs are powerful and broadly applicable stochastic 

search and optimization approaches, and simulate the 

natural behaviour of biological systems. GAs have 

been successfully adapted to solve several 

combinatorial optimization problems for finding 

optimal or suboptimal solutions in a reasonable time. 

These algorithms start with an initial population that 

includes solutions to the problem at hand. The solutions 

are generally called chromosomes. Each chromosome 

is evaluated to obtain its fitness value. In order to create 

new chromosomes (children) some chromosomes 

(parents) from the population undergo stochastic 
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transformations by means of genetic operators; 

crossover and mutation. Crossover creates new children 

by combining parts from generally two parents. 

Mutation creates new individuals by making changes 

(mutating) in a single chromosome. A new population 

is formed by selecting chromosomes from the parent 

population and the children population according to a 

selection procedure. After several generations (a 

predefined iteration number), the algorithm converges 

the most fit chromosome, which represents an optimal 

or suboptimal solution to the problem at hand [12, 13, 

14 and 15]. 

3.1. Representation 

In the studied problem “which train, among the 

candidate trains, will be permitted to use the long track 

part between two consecutive real stations?” is an 

important question to be answered. To place the 

permission decision on a systematic way we used 

dispatching rules. We have m decision points if there 

are m main long track parts between the real stations. In 

our GA, a chromosome (a solution for the problem) in 

the initial population is composed of m genes and each 

gene is related with a decision point. That is, a 

dispatching rule is used to select one of the candidate 

trains that are waiting to use a long track.  

The representation of a chromosome is given in 

Table 1. In this table, m denotes the number of long 

tracks that link the consecutive real stations on a 

corridor, and (m+1) represents the number of the real 

stations. As a result a chromosome in the proposed GA 

has m genes. In Table 1, Sj (j = 1, 2, …, m+1) denotes 

the real station number and ik (k = 1, 2, …, m) denotes 

the gene related with the kth decision point where m is 

the total number of genes in a chromosome.  

Table 1. Representation of a chromosome  

Decision points  

(relevant long tracks) 
1st 2nd ... (m-1)th mth 

Location of  

the long tracks 
 S1-S2 S2-S3 ... Sm-1 - Sm Sm - Sm+1 

Gene sequence of 

 a chromosome 
i1 i2 ... im-1 im 

For instance, the first gene (i1) in the chromosome 

denotes the dispatching rule that is used for the 

candidate trains waiting to use the long track part 

between the first (S1) and the second (S2) stations. A 

gene can take values in a range of (ik = 1,…,6; k = 1, 2, 

…, m), and each gene value in the range (1,6) indicates 

a dispatching rule such that: 1 denotes the first come 

first served (FCFS) rule, 2 the last come first served 

(LCFS) rule, 3 the shortest current travelling time 

(ShrCTT) rule, 4 the longest current travelling time 

(LngCTT) rule, 5 the shortest remained track part 

(ShrRTP) rule, and 6 the longest remained track part 

(LngRTP) rule. 

The chromosome representation used in the SimGA 

is flexible for both the changes in the railway 

infrastructure and the changes in the total number of 

dispatching rules. While the changes in the railway 

infrastructure can influence the length of a 

chromosome, the changes in the total number of 

dispatching rules can affect the value of a gene. 

Therefore, this chromosome representation can be 

adapted and used for several types of the problem, it is 

not matter which railway infrastructures these problems 

have and which dispatching rules they use. For a train 

schedule on a single track corridor, the problem is 

meeting of the trains while they are travelling in 

opposite directions in the system. With the encoding 

presented here, any changes in the number of trains or 

number of train meetings, which increases the problem 

complexity, can be overcome easily. 

 

3.2 Initial Population and evaluation 

The chromosomes in the initial population are 

randomly generated. After generating a chromosome, 

the dispatching rules in the simulation model that are 

used for the candidate trains waiting in the queues of 

the long track parts are rearranged according to the 

gene values of the chromosome. Then, the simulation 

model is run for n replications and the average train 

travel time value of t trains is noted to be the fitness 

value of the chromosome. The procedure for generating 

the initial population and evaluation is given in Table 

2. 
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Table 2. Procedure for generating the initial population 
and evaluation 

Begin SimGA 

Generate INITIAL POPULATION 

     PS; population size 

     From k = 1 to k = PS 

          Randomly generate a chromosome  

          Chr(k); kth chromosome in population 

               From M =1 to M = m 

                    iM ; the gene related with Mth decision point 

                    iM = takes a random value from the set D = {1, 2, 3, 4, 5, 6} 

               Next M 

          Chr(k) = [ i1, i2, … , im-1, im ] 

          Rearrange the simulation model 

               From M =1 to M = m 

                    If iM = 1 rearrange Q(M) rule as FCFS 

                    If iM = 2 rearrange Q(M) rule as LCFS 

                    If iM = 3 rearrange Q(M) rule as ShrCTT 

                    If iM = 4 rearrange Q(M) rule as LngCTT 

                    If iM = 5 rearrange Q(M) rule as ShrRTP 

                    If iM = 6 rearrange Q(M) rule as LngRTP 

               Next M 

          Run the rearranged simulation model 

               From N = 1 to N = n  

                    Find the average train travel time of t trains for the Nth 

replication 

               Next N 

          Calculate the fitness value 

               Fitness; the average of n average train travel time values 

     Next k 

Rank the initial population 

     Rank the initial population according to the fitness values of the  

     chromosomes 

Select best of the initial population 

     Record the best fitness value and related chromosome 

3.3. Parent selection and crossover 

The procedure for parent selection and crossover is 

exhibited in Table 3. At first, the parents are selected 

from the previous generation according to their fitness 

values. The best one is selected to be the first mother 

and the second best is selected to be the first father. 

Two children are obtained from the parents based on 

the single point crossover. Then, the third best one is 

selected to be the mother and the fourth best one to be 

the father of the new family. Two children are also 

attained from these parents by the single point 

crossover. Crossover goes on according to the 

predetermined crossover rate. The simulation model is 

rearranged for every child, the model is run for n 

replications, and the average train travel time value of t 

trains is hold to be the fitness value of the child. 

 

Table 3. Procedure for crossover 

GN; generation number 

maxGN; maximum generation number 

From GN = 1 to GN = maxGN 

     CROSSOVER 

     CR; crossover rate 

     nCrs; the number of chromosomes selected for crossover 

     nCrs = PS * CR 

          From k =1 to k = nCrs - 1 

               rChr(k); kth chromosome in the ranked population of the 

previous 

               generation 

               Select the parents 

               rChr(k); the mother 

               rChr(k+1); the father 

               Implement the single point crossover and obtain two 

children 

                    From c = 1 to c = 2 

                         cChr(k,k+1,c); cth child from the parents rChr(k) and 

                         rChr(k+1) 

                         cChr(k,k+1,c) = [ i1, i2, … , im-1, im ] 

                         Rearrange the simulation model (Steps are in Table 2) 

                         Run the rearranged simulation model (Steps are in 

Table 2) 

                         Calculate the fitness value 

                    Next c 

          k = k +1 

          Next k 

3.4. Mutation 

The procedure for mutation is denoted in Table 4. 

At first, a child is selected randomly for mutation. 

Next, a gene of the child is selected randomly and this 

gene is changed with one of the other potential value of 

the gene. The new gene value is randomly selected 

from the set D = {1, 2, 3, 4, 5, 6} except the current 

value of the gene. In this set each value indicates a 

dispatching rule. Then, the simulation model is 

rearranged, the model is run for n replications, and the 

average train travel time value of t trains is noted to be 

the fitness of the mutated child. Mutation goes on 

according to the predetermined mutation rate. 

3.5. Termination criteria and replacement 
strategy 

The procedure for termination and replacement 

strategy is denoted in Table 5. By using the termination 

criteria procedure, if it is desired, the SimGA can be 

stopped at a generation that has the same best fitness 

value with a predetermined number of previous 

generations. The replacement is made according to the 

elitism strategy. Elitism strategy makes a number of the 

best individuals at each generation survive. In order to 



Yalçınkaya 
 

International Journal of Railway Research (IJRARE) 5 

 

form the new generation, the parents, children and 

mutated children are ranked according to their fitness 

values. The newly generated population is formed by 

using the ranked population adhered to the prescribed 

population size. 

Table 4. Procedure for mutation 

     MUTATION 

          MR; mutation rate 

          nMtt; the number of chromosomes selected for mutation 

          nMtt = PS * MR 

               From k =1 to k = nMtt 

                    Select a child randomly 

                    cChr(k); the randomly selected child for mutation 

                    cChr(k) = [ i1, i2, … , im-1, im ] 

                    Select a gene of the child randomly 

                    ij ; the selected gene related with jth decision point, j = 1, …, 

m 

                         If ij  = 1 change the ij with a random value from the set  

                         E1 = {2, 3, 4, 5, 6} 

                         If ij  = 2 change the ij with a random value from the set  

                         E2 = {1, 3, 4, 5, 6} 

                         If ij  = 3 change the ij with a random value from the set  

                         E3 = {1, 2, 4, 5, 6} 

                         If ij  = 4 change the ij with a random value from the set 

                         E4 = {1, 2, 3, 5, 6} 

                         If ij  = 5 change the ij with a random value from the set  

                         E5 = {1, 2, 3, 4, 6} 

                         If ij  = 6 change the ij with a random value from the set  

                         E6 = {1, 2, 3, 4, 5} 

                    mcChr(k); the mutated child 

                    mcChr(k) = [ i1, i2, … , im-1, im ] 

                    Rearrange the simulation model (Steps are in Table 2) 

                    Run the rearranged simulation model (Steps are in Table 

2) 

                    Calculate the fitness value 

               Next k 

     Rank the population 

          The current population includes; individuals from the previous 

          generation population, children and mutated child(ren) 

     Select best of the population 

          Record the best fitness value and related chromosome 

 

Table 5. Procedure for termination criteria and 
replacement strategy 

     Check TERMINATION CRITERIA 

          TrmCnt; termination counter 

          maxTrmCnt; the maximum termination counter 

          bFtV(GN); the best fitness value of the current generation GN 

               If bFtV(GN) = bFtV(GN-1) 

               TrmCnt = TrmCnt +1 

                    If  TrmCnt < (maxTrmCnt -1) go Next GN  

                    Else go Stop SimGA 

               Else TrmCnt = 0 

     Form the population of the next generation 

          Form by using the ranked population adhered to the PS 

Next GN 

Stop SimGA 

Framework of the SimGA for the problem is briefly 
exhibited in Table 6.  

Table 6. Framework of the SIMGA 

Begin SimGA 

Generate INITIAL POPULATION (Steps are in Table 2) 

Rank the initial population 

     Rank the initial population according to the fitness values of the 

chromosomes 

Select best of the initial population 

     Record the best fitness value and related chromosome 

GN; generation number 

maxGN; maximum generation number 

     From GN = 1 to GN = maxGN 

          CROSSOVER (Steps are in Table 3) 

          MUTATION (Steps are in Table 4) 

          Rank the population 

              The current population includes; individuals from the previous  

              generation population, children and mutated child(ren) 

          Select best of the population 

              Record the best fitness value and related chromosome  

          Check TERMINATION CRITERIA (Steps are in Table 5) 

          Form the population of the next generation 

              Form by using the ranked population adhered to the PS 

     Next GN 

Stop SimGA 

 

4.  Research results 

 Genetic operators for the hypothetic problem are as 

follows. Since there are nine main track parts (= m) 

between the 10 real stations in our problem, a 

chromosome (a solution) is composed of nine genes, 

and each gene is related with a decision point. As 

explained above, a gene can take values in a range of 

(1,6), and each value in this range indicates a 

dispatching rule. The first gene in the chromosome is 

the dispatching rule that is used for the candidate trains 

waiting to use the track between the S1 and the S2, the 

second gene is the dispatching rule that is used for the 

candidate trains waiting to use the track between the S2 

and the S3 and so on. For an instance a chromosome 

structure is exhibited in Table 7. In this table, the first 

gene value 1 means that the dispatching rule used for 

the candidate trains waiting to use the track between 

the S1 and the S2 is FCFS rule, the fourth gene value 2 

means that the dispatching rule used for the candidate 

trains waiting to use the track between the S4 and the S5 

is LCFS rule. 

For this chromosome representation, there are 6
9
 = 

10,077,696 possible feasible solutions for the studied 

problem. Since the GA presented in this study are 



Train Scheduling Problem - Phase II: A Simulation Integrated Genetic Algorithm 

 

6 International Journal of Railway Research (IJRARE) 

 

simulation integrated, and the simulation model is run 

in order to calculate the fitness value for each 

chromosome, we have to make more than one 

simulation replications. In order to make 20 (= n) 

replications for each possible feasible solution, totally 

201,553,920 replications are needed to obtain fitness 

values of all the possible feasible solutions.  

Table 7. Representation of a chromosome for the studied 

problem 

Decision points 

(relevant long tracks) 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

Location of 

the long tracks 

S1-

S2 

S2-

S3 

S3-

S4 

S4-

S5 

S5-

S6 

S6-

S7 

S7-

S8 

S8-

S9 

S9-

S10 

Gene sequence of 

a chromosome 
1 3 4 2 5 1 6 2 4 

For different values of the genetic operators, the 

population size (PS), the crossover rate (CR) and the 

mutation rate (MR), the SimGA was run, and the 

observed best average travel time values are recorded. 

The utilized values for operators are: 10, 20 and 30 for 

PS, 40%, 60% and 80% for CR, and 10%, 20% and 

30% for MR. Since there are 3*3*3 = 27 different 

combinations of the utilized values, these combinations 

will be represented by PS/CR/MR for short. The 

presented algorithm was run for each PS/CR/MR 

combination, and obtained results are displayed in 

Table 8.  

As can be seen in Table 8, the same best average 

travel time value, 20742.93 seconds, is obtained by 

each combination. The earliest generation number, the 

number of the generation in which the best solution is 

reached, is six and appeared in 10/0.8/0.3 and 

30/0.8/0.1 combinations. The latest generation number 

in which the best is observed is 37, and appeared in the 

combination 10/0.6/0.1. 

The obtained results are also exhibited in Fig. 2 in 

order to make the comparison more easily. The circles 

in Fig. 2 indicate that the MR is 10% in the related 

combination, on the other hand the rectangles indicate 

that the MR is 20%, lastly the triangles mean that the 

MR is 30%. For instance, in this figure, the first point 

denotes the GN belongs to combination 10/0.4/0.1 and 

equals to 25.  

Table 8. Result of the SIMGA 

 PS CR MR Chromosome Fitness value GN 

1 10 0.40 0.10 6,3,4,2,4,4,4,1,4 20742.93 25 

2 10 0.40 0.20 1,3,1,2,4,4,5,6,4 20742.93 16 

3 10 0.40 0.30 1,3,1,2,4,4,2,6,4 20742.93 13 

4 10 0.60 0.10 6,3,4,2,2,4,4,1,4 20742.93 37 

5 10 0.60 0.20 1,3,5,2,4,4,5,1,4 20742.93 27 

6 10 0.60 0.30 6,3,4,2,2,5,5,1,4 20742.93 13 

7 10 0.80 0.10 6,3,5,2,4,4,5,3,4 20742.93 31 

8 10 0.80 0.20 1,6,5,2,4,4,5,1,4 20742.93 20 

9 10 0.80 0.30 6,3,4,2,2,4,4,1,4 20742.93 6 

10 20 0.40 0.10 6,3,1,2,2,4,2,6,4 20742.93 19 

11 20 0.40 0.20 3,6,5,2,5,4,4,1,4 20742.93 12 

12 20 0.40 0.30 6,3,1,2,5,1,4,6,4 20742.93 13 

13 20 0.60 0.10 6,3,1,2,4,4,5,1,4 20742.93 17 

14 20 0.60 0.20 6,3,5,2,5,1,2,1,4 20742.93 15 

15 20 0.60 0.30 1,3,1,2,4,4,5,1,5 20742.93 24 

16 20 0.80 0.10 6,3,5,2,2,1,2,1,4 20742.93 10 

17 20 0.80 0.20 3,3,5,2,4,1,5,6,4 20742.93 17 

18 20 0.80 0.30 1,3,1,2,4,5,4,6,4 20742.93 9 

19 30 0.40 0.10 6,3,4,2,5,1,2,1,4 20742.93 12 

20 30 0.40 0.20 6,3,4,2,4,5,2,6,4 20742.93 7 

21 30 0.40 0.30 6,3,1,2,4,1,2,1,4 20742.93 7 

22 30 0.60 0.10 6,3,4,2,4,1,2,1,4 20742.93 24 

23 30 0.60 0.20 6,3,5,2,2,4,2,1,4 20742.93 7 

24 30 0.60 0.30 6,3,5,2,4,1,2,3,4 20742.93 8 

25 30 0.80 0.10 6,3,5,2,4,4,2,3,4 20742.93 6 

26 30 0.80 0.20 6,3,1,2,5,4,2,3,4 20742.93 11 

27 30 0.80 0.30 6,3,4,2,4,1,2,3,4 20742.93 12 

GA is a member of generate-and-test algorithms. 

Researchers generally run their GA by different 

operator values to observe the effect of operators, and 

to find best operators combination. Therefore, the best 

operator values strictly depend on the problem at hand, 

as being in the current study. 

The obtained best fitness values in generations for 

10/0.8/0.3 and 30/0.8/0.1 combinations are depicted in 

Figure 3. The best is reached in four steps (in the 1
st
, 

2
nd

, 3
rd

 and 6
th 

generations) in the combination 

10/0.8/0.3. On the other hand an improvement is 

occurred in every successive generation (six steps) until 

the best is reached in the combination 30/0.8/0.1. In 

Figure 4, the results for the combination 10/0.6/0.1 are 

exhibited. As can be seen the best is reached in five 

steps (in the 1
st
, 10

th
, 13

th
, 34

th
 and 37

th
 generations). 
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Fig. 3 and Fig. 4 indicate that the developed SimGA 

has an ability to escape from local optimums which 

have very close fitness values to the best. In addition it 

can be seen that the visited local optimums are different 

from each other. This means that the different operator 

values result a good exploration on the solution space 

of the SimGA. 

 

In [1 and 3] after the simulation modelling 

framework was developed, the result of a 

deterministic scenario in which all inputs were 

deterministic and the dispatching rule was FCFS for 

all decision points was discussed. The deterministic 

scenario was run and the average train travel time 

was calculated as 17956 seconds. Then, the 

behaviour of the framework in stochastic nature on 

 

Figure 2. The best GNs of the SimGA 

 

Figure 3. The best fitness values in generations for 10/0.8/0.3 and 30/0.8/0.1 combinations 
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one replication of the stochastic scenario was 

discussed, and the average train travel time was 

calculated as 24218 seconds.  

In order to make comparison, in this study we 

replicate the stochastic simulation model 20 times with 

FCFS dispatching rule for all decision points. The 

fitness value of this chromosome is calculated as 21408 

seconds by the stochastic simulation model. 

While the simulation model produces 21408 

seconds average train travel time, we reached 20742.93 

seconds average train travel time by the SimGA. As a 

result, the SimGA provided 3.11% improvement on the 

average travel time value in a short running time. 

5.  Conclusion 

In this study, our aim is to obtain a feasible train 

timetable that includes arrival and departure times of 

all trains at the visited stations with minimum average 

train travel time. By this aim, we integrated a GA with 

the previously developed framework [1] to get a 

feasible train timetable with minimum average train 

travel time. Using our proposed encoding structure for 

our GA, any changes in the number of trains or number 

of train meetings, which make the problem more 

complex, can be easily overcome. The developed 

encoding helps researchers to find solutions in the 

feasible area of GA’s solution space, and consequently 

to reduce the solution time of the SimGA. 

We see that the SimGA results 3.11% improvement 

on the average travel time value in a short running 

time. We conducted several experiments with different 

genetic operator values and saw that the SimGA has an 

ability to reach the best solution in a reasonable time. 

On the other hand the SimGA shows a good 

characteristic of easily escaping from local optimums 

which have fitness values very close to the best. 
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